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Who We Are
Matt Swaffer
Technical architect with a background in Ed Psych and 
experience designing systems that extract information 
and knowledge from data enabling intelligent reasoning.

Mike Barber
Data scientist specializing in bringing machine learning 
models into production. He currently has models in 
production today at companies like StubHub, Paypal, 
eBay, and Cognitell.
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What do we do?
Data Science
We provide data engineering and data science services 
specific to IR needs.

Data Wrangling
We provide ETL and data warehousing expertise to support 
advanced modeling.

Higher Education
We have a focus on Higher Education and understand the 
data and the environment.
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Background of Wyoming Work
Wyoming Community College Commission 
7 Community Colleges

• Many IR offices have 1-2 full time employees
• Retention Modeling attempts in past failed

Work performed
• Initiated & Facilitate State-wide IR Research group
• Provide Data Science Training specific to Institutional 

Researchers
• Project Collaboration
• Design, Develop, and Prototype Data Pipelines
• LMS Data Value Analyses
• Feature Engineering
• Machine Learning Model Development



1200 6th Avenue, Suite 800, Seattle, WA 98101  |            (719) 314-3400  |             www.cognitell.com    

Preliminary Results
LMS engineered features indicative of Student 
Engagement

• Almost half of highest correlated combined features were LMS
• Important LMS features

• LMS Routine – frequency/how long/when
• LMS Assignment and Quiz Activity
• LMS Discussion Topic Participation

Model Improvement of LMS data
• Mean model accuracy increased between 10%-20%
• False Positives (Type I error) reduced by as much as 15%
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Self Report Survey Data
Gaining early insight into student behavior indicators
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Challenges with existing intake 
assessments

Expensive to administer
Not customized
Might not work for a small or rural student 

population
Colleague SIS hard to integrate with captured 

data
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Background of CWC Work

Worked with IE and Student Success to develop 
intake survey
Iterated over scales and items to tailor to the 
population
Incorporated items related to previously 
collected drop / withdrawal 
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Psychosocial & Skills Factors (PSF)

Motivation 
and Skills

• Achievement motivation
• Academic goals
• Academic skills

Self-
Regulation

• Academic self-efficacy 
• General self concept

Social 
Engagement

• Perceived social support
• Social Involvement
• Institutional Commitment

(Le et. al. 2005, Robbins et. al., 2004,2009)
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Psychosocial & Skills Factors (PSF)
Relevant to Goals & Population

Motivation 
and Skills

• Achievement motivation
• Academic goals
• Academic skills

Self-
Regulation • Academic self-efficacy 

Social 
Engagement • Perceived social support

(Le et. al. 2005, Robbins et. al., 2004,2009)
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Population Specific Constructs

Drop 
Withdrawal 

Reasons
• Gathered from CWC reports

COVID-19 • Specific issues for CWC students
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Uses of Data

Coaching of individual students
Identifying trends
Predictive analytics
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Combining Disparate Data Sources
Using LMS, SIS, Survey and other data for modeling
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Importance of Combining 
Disparate Data Sources
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Importance of Combining 
Disparate Data Sources

• More Context is ALWAYS a good thing
• More Context allows for new Features, or 

different Features
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Importance of Combining 
Disparate Data Sources

• More Context is ALWAYS a good thing
• More Context allows for new Features, or 

different Features
• More Data is not necessarily a good thing –

unless it contains new context
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Importance of Combining 
Disparate Data Sources

• Feature Shift is Real
• Our World is constantly changing around 

us -> our models should too!
• Education has schedules [semesters] that 

require model retraining & retuning 
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How to Combine Disparate Data 
Sources

• Design, Develop, and Prototype Data Pipelines
• Perform A LOT of statistical experiments
• Apply Feature Engineering Continuously
• Employ Feature Selection & Evaluation 

Techniques
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Feature Selection & Evaluation

Feature selection is primarily focused on removing non-
informative or redundant predictors from the model.

— Page 488, Applied Predictive Modeling, 2013.

https://amzn.to/3b2LHTL
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Feature Selection & Evaluation

Many models, especially those based on regression 
slopes and intercepts, will estimate parameters for every 
term in the model. Because of this, the presence of non-
informative variables can add uncertainty to the 
predictions and reduce the overall effectiveness of the 
model.

— Page 488, Applied Predictive Modeling, 2013.

https://amzn.to/3b2LHTL
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Feature Selection & Evaluation Techniques

Feature 
Selection

Unsupervised Supervised

Intrinsic Algo Wrapper 
Methods

Filter 
Methods

Dimension 
Redux
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Learnings From Our Approach

• Feature Selection & Evaluations:
• Reduce Model Overfitting
• Improves Model Accuracy
• Reduces Model Training Time

• There is no Best Feature Selection & Evaluation Technique.
• Make sure you apply the appropriate statistical test to the 

appropriate data type.
• Feature Selection must be an active part of the modeling process.
• Features should be routinely evaluated for model contribution.
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From Prediction to Prescription
A theoretical model for prescribing interventions based on student behavior
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From Prediction to Prescription

• LMS
• SIS
• Survey Data

Data

Predictive
Model

Prediction
• LMS
• SIS
• Survey Data

Data

Prescriptive
Model

Prescribed 
Action
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The Theoretical Model
Interventions Mediation                                  Outcome

Academic Skills (AS)

Self Management (SM)

Socialization (SO)

Academic 
Performance

Motivational
Control

Social
Control

Emotional
Control

Academic 
Retention

AS

AS / SM

AS / SM

SM / SO

AS / SM / SO

(Robbins et. al., 2009)
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Intervention Categories

Academic Skills

• Task-related (i.e., underlining, note-taking etc.)
• Mnemonic training
• Minimize learning pathologies (i.e., anxiety, surface learning)
• Reading skills

Self-management

• Planning, implementing, and monitoring
• Time Management
• Motivation and self-concept
• General counseling 

Social

• Learning communities
• Service Learning
• Social media
• Diversity / inclusivity programs

(Gray et al., 2013; Hatch, 2017; Hattie et al., 1996; 
Rigali‐Oiler & Kurpius, 2013; Robbins et al., 2009; Ye, 2009)
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Psychosocial & Skills Factors (PSF)

Emotional 
Control 

(Academic skills)

• Study skills
• Problem solving skills
• Communication skills
• Emotional control skills (i.e., test anxiety)

Motivation 
Control

• Goal focus (academic goals)
• Academic self-confidence (self-efficacy)
• Conscientiousness

Social Control 
(Engagement)

• Sociability (e.g., perceived social support)
• Social connection (involvement)
• Teamwork

(Le et. al. 2005, Robbins et. al., 2009)
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Behavior Related to PSFs

Study Skills

Time management

Time 
between due 

date and 
submission

Time of day 
using LMS

Frequency 
and 

consistency 
of LMS use

Low long 
before a quiz 

to access 
study 

resources

Preparation 
for Exams

Use of 
practice 
quizzes

Use of study 
resources

Class 
Notes

Download of 
PowerPoint
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Behavior Related to PSFs

Motivation - Conscientious

Achievement Motivation

Significant 
change for 

the worse in 
GPA

Failing a core 
class

Goal Focus

Placement 
test 

performance

Performance 
in core 
courses

Academic 
Self-

confidence

Has a major 
been 

declared?
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Behavior Related to PSFs

Social Engagement

Perceived Social 
Support

SES 
differences Financial aid 1st gen / FTFT

Social 
Connection

Social media 
engagement

Extracurricular 
activities

Teamwork

Group work 
engagement

Group work 
success
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Revisit the Theoretical Model
Interventions Mediation                                  Outcome

Academic Skills (AS)

Self Management (SM)

Socialization (SO)

Academic 
Performance

Motivational
Control

Social
Control

Emotional
Control

Academic 
Retention

AS

AS / SM

AS / SM

SM / SO

AS / SM / SO

(Robbins et. al., 2009)
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Ways we can help
Survey customization, data management, data analysis
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Ways To Get In Touch

• Visit our CAIR 2020 conference page at https://www.cognitell.com/cair-
2020

• Here, you can download the slides, along with our brochures, and watch 
the presentation.

• You may also use the calendar on the page to set up a time to meet with us to 
further discuss how we may help you.

• For any questions please feel free to email us at info@cognitell.com
• Follow us on LinkedIn here https://www.linkedin.com/company/cognitell

http://vishttps/www.cognitell.com/cair-2020
mailto:info@cognitell.com
https://www.linkedin.com/company/cognitell
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