

Retention Modeling

and Prescribed Interventions

CAIR 2020

Who We Are

Matt Swaffer

Technical architect with a background in Ed Psych and experience designing systems that extract information and knowledge from data enabling intelligent reasoning.

Mike Barber

Data scientist specializing in bringing machine learning models into production. He currently has models in production today at companies like StubHub, Paypal, eBay, and Cognitell.

What do we do?

Data Science

We provide data engineering and data science services specific to IR needs.

Data Wrangling

We provide ETL and data warehousing expertise to support advanced modeling.

Higher Education

We have a focus on Higher Education and understand the data and the environment.

Background of Wyoming Work

• Wyoming Community College Commission

○ 7 Community Colleges

- Many IR offices have 1-2 full time employees
- Retention Modeling attempts in past failed

• Work performed

- Initiated & Facilitate State-wide IR Research group
- Provide Data Science Training specific to Institutional Researchers
- Project Collaboration
- Design, Develop, and Prototype Data Pipelines
- LMS Data Value Analyses
- Feature Engineering
- Machine Learning Model Development

Preliminary Results

CLMS engineered features indicative of Student Engagement

- Almost half of highest correlated combined features were LMS
- Important LMS features
 - LMS Routine frequency/how long/when
 - LMS Assignment and Quiz Activity
 - LMS Discussion Topic Participation

OModel Improvement of LMS data

- Mean model accuracy increased between 10%-20%
- False Positives (Type I error) reduced by as much as 15%

Self Report Survey Data

Gaining early insight into student behavior indicators

Challenges with existing intake assessments

- Expensive to administer
- Not customized
- Might not work for a small or rural student population
- Colleague SIS hard to integrate with captured data

Background of CWC Work

- Worked with IE and Student Success to develop intake survey
- Iterated over scales and items to tailor to the population
- Incorporated items related to previously collected drop / withdrawal

Psychosocial & Skills Factors (PSF)

COGNITELL P 1200 6th Avenue, Suite 800, Seattle, WA 98101 | 📞 (719) 314-3400 | 💽 www.cognitell.com

Psychosocial & Skills Factors (PSF) Relevant to Goals & Population

(Le et. al. 2005, Robbins et. al., 2004,2009)

Population Specific Constructs

Uses of Data

Coaching of individual students
Identifying trends
Predictive analytics

Combining Disparate Data Sources

Using LMS, SIS, Survey and other data for modeling

- More Context is ALWAYS a good thing
- More Context allows for new Features, or different Features

- More Context is ALWAYS a good thing
- More Context allows for new Features, or different Features
- More Data is not necessarily a good thing unless it contains new context

- Feature Shift is Real
- Our World is constantly changing around us -> our models should too!
- Education has schedules [semesters] that require model retraining & retuning

How to Combine Disparate Data Sources

- Design, Develop, and Prototype Data Pipelines
- Perform A LOT of statistical experiments
- Apply Feature Engineering Continuously
- Employ Feature Selection & Evaluation Techniques

Feature Selection & Evaluation

Feature selection is primarily focused on removing noninformative or redundant predictors from the model.

— Page 488, <u>Applied Predictive Modeling</u>, 2013.

Feature Selection & Evaluation

Many models, especially those based on regression slopes and intercepts, will estimate parameters for every term in the model. Because of this, the presence of noninformative variables can add uncertainty to the predictions and reduce the overall effectiveness of the model.

— Page 488, <u>Applied Predictive Modeling</u>, 2013.

Feature Selection & Evaluation Techniques

Learnings From Our Approach

- Feature Selection & Evaluations:
 - Reduce Model Overfitting
 - Improves Model Accuracy
 - Reduces Model Training Time
- There is no Best Feature Selection & Evaluation Technique.
- Make sure you apply the appropriate statistical test to the appropriate data type.
- Feature Selection must be an active part of the modeling process.
- Features should be routinely evaluated for model contribution.

. IVIUU	11 10001100	1000		· * · / U/-	1.4				
9161-912-100110	10001011	010	N' 1	.0	0	00000			
200.01(1(1.010)	10100101	0			101010	01000110	1116.111	line.	
1010010 01100011 00000100 0010	100111		10110	001.1010	10000100	10011001	11010100	1001001101	0110
	1001	001	101:0	00111010	10000100	10011001	11010100	10001101	0110
1010010 10060111 00° J 1+ C	01	'	10001 00	10101010	11101100	11100001	10100100	01001000	. 0 <u>)</u> 1
(0001 00100101 111, J1 001,		- 41	1.0: 00	01011111	00111001	01100111	11111100	011!	11:
1000 100111+0 1116+111 1010(10.101	00010111	01000011	00011100	11100010	10011100	0110001	1
1101 01110101 (2010000 (110	10110010	10110101	10011001	11001011	01001001	11100010	
00011 01000111 0:01111		10	000 1010	1 3 2010	100(-0010	00100011	000111111	0000100	2.
0001101000111000111		10100	·····		0000010	00100011	00011111	000010	01
(111001 00111001 110 ^c)111	".) li	10000000	(100110	10111001	01010010	01.10	9
101000 00010110 00'		.0100	10!	0111	00000101	00100011	11010010	100 1 1	00
11010 10001100		.00100	01001000	DU110111	00100001	01000101	01010001	0010, '	
1/1101()		1111100	01114	011 1101	1.011001	11001010	11101000	1001	
- 01.0 · · · ·		10011100	100010	0101	11010	10001010	10001101	011 (
		10011100	11100010	0101110	1010	0001100	1001101	(i)	
9 10110		01001001	11100010	010110:1	(100°	1010	100011	1	
110		0001/111	00001000	01011011	0	001	1001	((h	
0000000		10,0010	01100011	00000100	00/	14	()	1 19	
01100111 06		/10010	10000111	00011000	1	١.	1.01	all '	
100110111 001			100101	11110001			110	0101	
1.01111101.110110	. /		011110	111011			01	001 .1	. 01
			10101	111011			.01		1. 10
01011111 110100			10101	100100				101.0010	
91011011 1100010	01 🖊)	//)0111	000111					JU
`1011011 010011	1		.11001	110010	01	11		,1	1006
20100 000010	i / //		10110	0011)	1			101	0110
11000 100111			1100	1010 0	1			001000	0011
10001001			1100	1010		1		1001000	0011
0001 0011			.100	010				1111101	0111
1111 101				<u>р</u> .		1	11	11000.	0101
0000 0)									101
1110									
101'	1 march		er dune						Ű.
101.	7711	XNIJ		11011	NIN	1.15		11.	
10	444	XAL			444				
1- 3	THE	ANT			122	112			
	XIII	111	1 1		1124		7	1.1	1
	HH	/////				+++	11	1	
	XXIII	1111		111	111	111	110	41	_
111	111	1111		111	11	$(\uparrow\uparrow)$	11	11	
	AAH	444				+++	1//		-
	XXII				111	11	117	1	1)
SS. 🧠	[] [] []	111		11	11	111	++	11.	1
	+++++	///			++	11	11		7
	HH					11	11	11	1
	4				1-1-	11	11	11	7
	1				11	11	11	1)	11
	_	1	1		11	11		11	1
				1 1/	1 1		1 1	1)	

From Prediction to Prescription

A theoretical model for prescribing interventions based on student behavior

From Prediction to Prescription

The Theoretical Model

(Robbins et. al., 2009)

Intervention Categories

(Gray et al., 2013; Hatch, 2017; Hattie et al., 1996; Rigali-Oiler & Kurpius, 2013; Robbins et al., 2009; Ye, 2009)

Psychosocial & Skills Factors (PSF)

(Le et. al. 2005, Robbins et. al., 2009)

Behavior Related to PSFs

Behavior Related to PSFs

Motivation - Conscientious

Achievement Motivation		Goal	Academic Self- confidence	
Significant change for the worse in GPA	Failing a core class	Placement test performance	Performance in core courses	Has a major been declared?

Behavior Related to PSFs

Social Engagement

Revisit the Theoretical Model

(Robbins et. al., 2009)

Ways we can help

Survey customization, data management, data analysis

Ways To Get In Touch

- Visit our CAIR 2020 conference page at https://www.cognitell.com/cair-2020
 - Here, you can download the slides, along with our brochures, and watch the presentation.
 - You may also use the calendar on the page to set up a time to meet with us to further discuss how we may help you.
- For any questions please feel free to email us at info@cognitell.com
- Follow us on LinkedIn here https://www.linkedin.com/company/cognitell

References

- Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting Student Performance from LMS Data: A Comparison of 17 Blended Courses Using Moodle LMS. *IEEE Transactions on Learning Technologies*, *10*(1), 17–29. https://doi.org/10.1109/TLT.2016.2616312
- Fernández, A. R., González, F. S., Merino, P. J. M., & Kloos, C. D. (n.d.). A Data Collection Experience with Canvas LMS as a Learning Platform. 15.
- Gray, R., Vitak, J., Easton, E. W., & Ellison, N. B. (2013). Examining social adjustment to college in the age of social media: Factors influencing successful transitions and persistence. *Computers & Education*, *67*, 193–207. https://doi.org/10.1016/j.compedu.2013.02.021
- Hatch, D. K. (2017). The Structure of Student Engagement in Community College Student Success Programs: A Quantitative Activity Systems Analysis: *AERA Open*. https://doi.org/10.1177/2332858417732744
- Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of Learning Skills Interventions on Student Learning: A Meta-Analysis. *Review of Educational Research*, 66(2), 99–136. JSTOR. https://doi.org/10.2307/1170605
- Krumm, A. E., Waddington, R. J., Teasley, S. D., & Lonn, S. (2014). A Learning Management System-Based Early Warning System for Academic Advising in Undergraduate Engineering. In J. A. Larusson & B. White (Eds.), *Learning Analytics: From Research to Practice* (pp. 103–119). Springer. <u>https://doi.org/10.1007/978-1-4614-3305-7_6</u>
- Le, H., Casillas, A., Robbins, S. B., & Langley, R. (2005). Motivational and Skills, Social, and Self-Management Predictors of College Outcomes: Constructing the Student Readiness Inventory. *Educational and Psychological Measurement*, 65(3), 482–508. https://doi.org/10.1177/0013164404272493

References

Morris, L., Finnegan, C., & Wu, S.-S. (2005). Tracking Student Behavior, Persistence, and Achievement in Online Courses. *The Internet and Higher Education*, *8*, 221–231. https://doi.org/10.1016/j.iheduc.2005.06.009

Robbins, S. B., Oh, I.-S., Le, H., & Button, C. (2009). Intervention effects on college performance and retention as mediated by motivational, emotional, and social control factors: Integrated meta-analytic path analyses. *Journal of Applied Psychology*, 94(5), 1163–1184. https://doi.org/10.1037/a0015738

School of Humanities and Digital Sciences, Tilburg University, Netherlands, Shayan, P., & Zaanen, M. van. (2019). Predicting Student Performance from Their Behavior in Learning Management Systems. *International Journal of Information and Education Technology*, 9(5), 337–341. https://doi.org/10.18178/ijiet.2019.9.5.1223

- Smith, V. C., Lange, A., & Huston, D. R. (2012). *Predictive Modeling to Forecast Student Outcomes and Drive Effective Interventions in Online Community College Courses*. https://doi.org/10.24059/olj.v16i3.275
- Tellakat, M., Boyd, R. L., & Pennebaker, J. W. (2019). How do online learners study? The psychometrics of students' clicking patterns in online courses. *PLOS ONE*, *14*(3), e0213863. https://doi.org/10.1371/journal.pone.0213863
- Yeh, T. L. (2010). Service-Learning and Persistence of Low-Income, First-Generation College Students: An Exploratory Study. *Michigan Journal of Community Service Learning*, 16(2), 50–65.
- Yu, T., & Jo, I.-H. (2014). Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education. 269–270. https://doi.org/10.1145/2567574.2567594

