

Predictive Modeling Project Success Through Conversation, Process, and Transparency

R. P. Ruiz Senior Data Scientist

CAIR 2021

Getting Started: Introductions

Plan for Today's Talk

- Topics
 - Part I: Downside to Products/Black Boxes
 - Part II: Advantages to Process over Product
 - Part III: What's on your mind?
 - Part IV: Characteristics of Successful Predictive Modeling Projects
- Who Am I?
- What Are Your Predictive Modeling Project Experiences?

Introductions: Who Am I?

- Hacker & Maker by Nature
- Linguist and Teacher by Training
- Data Scientist by Practice

Introductions: What Are Your Predictive Modeling Project Experiences?

How many of you (past, present, future)

- Have used predictive modeling in your work?
- Have formed a part of the stakeholders group?
- Have managed a predictive modeling project?
- How many of you are new to predictive modeling?

Part I: Downside to Black Box Models

Part I: Downside to Black Box Models

We are awash in black box algorithms (all social media)

So, what's the problem? Lack of transparency:

- How was a given prediction arrived at?
- Can't compare effects of including/excluding data
 - Pre-pandemic vs Pandemic
- Can't audit where it performs well, and where it doesn't
- Can't see who it advantages or disadvantages

Is explainable

Can be validated: where does it do better/worse?

Count of Retained School Group Coll Health Sci/Prof Studies College of Arts & Sciences College of Business College of Tech/Occupational Science General University **Count of Predicted**

Truth vs. Prediction by Count

Facilitates discovery/serendipity

Can be rebuilt as data changes or is added/subtracted (AMPF)

Part III: What's on your mind?

Part IV: Characteristics of Successful Predictive Modeling Projects

Foundation

Seek common understanding through dialog

Applied Data Science 101

Step 1

Define the question

Seek to answer a specific question...

Seek to answer a specific question... which is actionable

Which students would be more likely to retain if they are provided additional financial aid?

Are iterative in nature: outputs and concepts

Explore the data before attempting to predict outcomes

Explore the data before attempting to predict outcomes...

1 Feature Percentages

Retention Flag

...And visualize that data different ways

1 Feature Counts

Same here: visualize data in different ways: counts

Same here: visualize data in different ways: percentages

Meet with stakeholders to discuss progress/deliverables/questions on a regular basis

Have diverse roles & capacities across stakeholders

- IR Specialists
- Advising
- Project management
- IT: Developers
- IT: Support
- Analysts

Part IV: Characteristics of Successful Predictive Modeling Projects

Continually check assumptions, discoveries and conclusions along the way

Start small & make incremental changes when training models

- Basic model based on institutional knowledge: GPA, Hours, Financial Aid
- Hoover mode: Discovery
- Engineered features
 - Distance from campus
 - Hours vs GPA, Hours * GPA = power
 - Date transformations: Day of year, week of year, month of year
 - Date deltas
 - **Can be augmented w/ new information after initial completion and delivery**

Part IV: Successful Predictive Modeling Projects: Techniques

Date transformations: Day of year, week of year, month of year

Date deltas: Term start date - application date

Part IV: Successful Predictive Modeling Projects: Techniques

Date transformations: Day of year, week of year, month of year

Date deltas: Term start date - application date

Part IV: Successful Predictive Modeling Projects: Techniques

At one client's behest I performed special date analysis (non standard)

Have explainable transformations: Hours vs GPA vs Hours * GPA

Validate against known historical outcomes

- Acknowledge that there's no free lunch
 - Noise: predictions are only as good as your data
 - Cost/benefit: Which errors are least/most costly?
- Are clear about what they're trying to predict:
 - Retention vs. stopping out = majority vs minority classes

No free lunch

Q&A

٠

۲

•

.

۲

•

•

٠

٠

٠

•

•

•

•

Thank you

