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• Compliance vs. Self-Improvement 

• Developing a culture of evidence 

• From reporting to analysis 

• Converting results into „actionable‟ statements 

• From „data silos‟ to integrated warehouse 

• Leverage technology, stay abreast of tech 

• Follow highest standards, best practices 

• Know your customers, mission 

• Empower staff, continuous honing of skills 

 

 

 

 

 

Challenges for Institutional Research 
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• Student success: a strategic imperative 

• Performance-based state funding impending 

• Dwindling state support for higher education 

• Tuition-revenue maximization 

• Reputation and marketing 

• Effective senior-management support by IR 

• K-16 Education Collaborative 
– High school transcript study 

– High school gateway curriculum 

– Reversing the tide of college remediation 

 

 

 

 

 

 

The Institutional Context 
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The Institutional Context 
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The Institutional Context 



Examples of Actionable Findings 

• Study abroad enhances academic performance 
– http://www.cis.unr.edu/IA_Web/research/USACConfOct2010.pdf 

• Impact of classroom facilities/schedule on learning 

– Smaller rooms are preferable 

– After-2pm courses associated with lower performance 
– http://onlinelibrary.wiley.com/doi/10.1002/ir.224/abstract 

• Student financial aid to maximize retention 

– Tuition discounts for middle-income students 

– More academic support for low-income students 

– http://www.uark.edu/ua/der/EWPA/Research/School_Finance/1802.html 

• Effect of high school environment on freshmen success 
– http://www.uark.edu/ua/der/EWPA/Research/Achievement/1808.html 

IR Support 

http://www.cis.unr.edu/IA_Web/research/USACConfOct2010.pdf
http://onlinelibrary.wiley.com/doi/10.1002/ir.224/abstract
http://www.uark.edu/ua/der/EWPA/Research/School_Finance/1802.html
http://www.uark.edu/ua/der/EWPA/Research/Achievement/1808.html
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In Need of Math Remediation* at UNR 
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K-16 Collaborative Data 
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First-Year Momentum* at UNR by AP Intensity 
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K-16 Collaborative Data 



Raising Graduation Rates 
Comparing 4-year and 6-year-plus Graduates 
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HS GPA: 3.5 vs 3.2 

ACT: 24.5 vs 22.2 

 

 

First-Y GPA:  

3.35 vs 2.71 

 

CoreHum 201 

Grade: 3.3 vs 2.6 

MathGPA:  

3.12 vs 2.4 

Honors Courses: 

14% vs 5% 

 

Change in Major: 

 25% vs 55% 

Capstone GPA: 

3.5  vs 3.2 

Avg annual 
remaining need: 
$2,610 vs $3,270 

 

Final GPA: 

 3.4 vs. 2.9 

Internship: 

31% vs 24% 

Difference in 
avg semester 
load: 3 credits 

Opportunity cost of staying one more 

year in college = $32,000 in foregone 

earnings plus annual increase in 

tuition cost.* 

*Adjusted 2010-$. Source: Herzog, S. (2006). “Estimating Student Retention and Degree 

Completion Time.” In J. Luan & C. Zhao (eds.), Data Mining in Action. NDIR, no. 131. San 

Francisco: Jossey-Bass, pp. 17-33. 

Student Success 
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Relevant Previous Research 
•  Caison, A. L. (2006). Analysis of institutionally specific retention 

research: A comparison between survey and institutional database 
methods. Research in Higher Education 48(4): 435-451.  

• DesJardins, S. T. (2002). An analytical strategy to assist institutional 
recruitment and marketing efforts. Research in Higher Education 43(5). 

• Herzog, S. (2006). “Estimating student retention and degree-
completion time: Decision trees and neural networks vis-à-vis 
regression.” In J. Luan & C. Zhao (eds.), Data Mining in Action: Case 
Studies of Enrollment Management. New Directions for Institutional 
Research, no. 131. San Francisco, CA: Jossey-Bass.  

• Herzog, S. (2005). “Measuring determinants of student return vs. 
dropout/stopout vs. transfer: a first-to-second year analysis of new 
freshmen.” Research in Higher Education, 46(8): 883-928.  

• Morgan, S. P., & Teachman, J. D. (1988). “Logistic regression: 
Description , examples, and comparisons.” Journal of Marriage and the 
Family, 50(4): 929-936.  

• Pascarella, E. T., & Terenzini, P. T. (2005). How College Affects Students: 
Volume 2, A Third Decade of Research. San Francisco, CA: Jossey-Bass.  

Predicting Student Success 
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At-Risk Forecasting Model 

• Identify at-risk freshmen students after initial 

matriculation for early intervention program 

• Develop coefficients for predictors determining student 

fall-to-spring/fall dropout risk 

– Logistic regression model using historical cohorts as training 

dataset 

– Maximize prediction accuracy with balanced dataset 

• Dropout risk scoring for new freshmen 

– Transformation of the logit(p) into probability scores 

– Decile grouping of scored students 

– Compare deciles with actual enrollment and other predicted 
enrollment (MAP-Works: http://www.unr.edu/mapworks) 

• Reporting of dropout risk via secure online access 

 

Predicting Student Success 

http://www.unr.edu/mapworks
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Data Description 

Predicting Student Success 

• Data sources 

– Matriculation system (SIS legacy, Peoplesoft, DW) 

– MAP-Works 

• Student cohorts 

– New full-time freshmen (excl. foreign students) 

– Fall entry „02-‟09 for model dev. (training set, N=17,311) 

– Fall entry 2010 for model validation (holdout set, N=2,527) 

• Data elements at start of first semester 

– Student demographics (age, gender, ethn/race, residency) 

– Academic preparation (high school GPA/test score index) 

– Financial aid profile (unmet need, Pell, loans, scholarships) 

– Credits enrolled, campus housing (y/n), athlete (y/n) 

• Data elements after start of first semester 

– MAP-Works survey risk scores (Sep., Nov., Feb) 
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Data Management Tasks 
• Exploratory data analysis 

– Variable selection (bivariate regression on outcome variable) 

– Variable coding (continuous/categorical/dummy in logit model) 

– Missing data imputation, constant-$ conversion (fin. aid data) 

– Composite variable(s) 

• Acad prep index = (HSGPA*12.5)+(ACTM*.69)+(ACTE*.69) 

– Variables excluded: college remediation, ACT/SAT test date 

• Logistic regression model 

– Maximize model fit (-2LL test/score, pseudo R2, HL sig.) 

– Create balanced sample in training dataset to optimize correct 

classification rate (CCR) for enrollees vs. non-enrollees (i.e. 

model sensitivity vs. specificity): all non-enrollees plus random 

sample of enrollees of ~ equal N) 

Predicting Student Success 
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Data Management Tasks 
• Scoring of relative dropout/retention risk 
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Where: p = probability of enrollment/non-enrollment 

           exp = base of natural logarithms (~ 2.72) 

   a = constant/intercept of the equation 

   b = coefficient of predictors (parameter estimates) 

Approximation of p:  (p*[1-p]*b) 

Where: p = baseline probability of dependent variable 

   b = logit coefficient 
 

Predicting Student Success 



Selected Factors and Spring Retention 
Fall Cohorts 2002-09 (N=17,311) 
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Predicting Student Success 
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Selected Factors and 2nd Fall Retention 
Spring-Retained Fall Cohorts 2002-09 (N=15,570) 
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Predicting Student Success 
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Data Analysis 
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Predicting Student Success 

Model tries to maximize correct prediction of at-risk 

students (non-enrollees), so they can be focused on, 

without raising the chance of selecting non-risk 

students (i.e. beyond OR = 1 or CCR = 0.5). 



Data Analysis 
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Predicting Student Success 



Data Analysis 
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Predicting Student Success 

Predicted Retention Decile 
Spring Status of Fall 2010 Cohort 



Data Analysis 
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Predicting Student Success 

Vendor Survey Risk Assessment, Fall 2010 Cohort 
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*Assesses fall 2011 dropout risk of spring-retained 



Gauging Survey Value 
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Predicting Student Success 

Predictors Wald Sig. Wald Sig. Wald Sig.

Age 2.1 * 2.4 * 2.2 *

Asian 0.5  0.1  0.0  

Credits Enrolled 5.3 *** 5.5 *** 6.1 ***

ClarkRural 13.6 *** 13.6 *** 14.4 ***

LoanFlag 1.4 * 0.7  0.5  

PellFlag 1.3 * 1.7 * 1.9 *

MillFlag 13.9 *** 16.6 *** 17.1 ***

AthleteFlag 0.0  0.2  0.1  

HSGFlag 15.9 *** 12.2 *** 13.5 ***

AcadIndex 7.1 *** 1.5 * 0.9  

RemNeedFlag 2.4 * 2.6 * 2.8 **

MWR HI 9.9 *** 23.5 ***

MWR MO 4.1 *** 11.1 ***

LR test pass yes yes

Nagelkerke R2 0.19 0.21 0.25

CCR of At-Risk 76.0% 75.6% 78.0%

Baseline MW Sep Survey MW Nov Survey



Gauging Survey Value 

• A sustained 2% point rise in prediction accuracy over 

5 years due to MAP-Works may translate into:  

– $237,500 in additional net revenue (5x1900x5x5) per cohort 

– Assuming no freshmen enrollment growth 

But… 

• Five-year cost of survey implementation 

– Product cost/fee, on-campus HR/IT investment 

• Data not available until late in the semester! 

• Balanced model (2002-10 data) yields 79% CCR for 

at-risk students, i.e. better than survey prediction 

• Survey prediction furnishes no at-risk deciles 24 

Predicting Student Success 
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Value of Student Self-Reported Data 

for At-Risk Prediction 

• Sources: 

– On-campus surveys 

– ACT Student Profile Q 

– SAT Student Descriptive Q 

– NSSE, CIRP (HERI-UCLA) 

• Limitations: 

– Validity of acad exp questions 

– Convergent validity of construct 

– Cognitive vs. affective questions 

– Interpretive ambiguity 

– Mental recall 

– Vague quantifiers 

 

Predicting Student Success 



Improving the Bottom Line 
 

• Rise in freshmen retention by 4 percentage 

points due to better at-risk forecasting 

– AY 2010-11 additional net tuition revenues = 

$215,119 (for 94 NV,19 WUE, excl OS students) 

for one cohort in one year, without OS $ ! 

– Downstream cumulative additional net tuition 

revenues result in $ millions! 

• Incentive for student to speed up graduation 

– Opportunity cost per year in foregone earnings = 

$32,000 per year (published constant 2010-$) 



Sample Data for Advisors 
• http://www.unr.edu/ia 
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R Number Last Name 
First 
Name 

Email 
Addr Age College Dept Major 

Dropout 
Risk Decile 
(10=highes
t; 
1=lowest) 

Relative 
Spring 
Retention 
%tile 

18 LBA ART BA-AHI 9 14.92 

18 LBA ANTH BA-AN 8 28.52 

18 LBA ANTH BA-AN 7 36.80 

18 LBA ANTH BA-AN 7 39.18 

18 LBA ANTH BA-AN 6 46.87 

18 LBA ANTH BA-AN 4 66.48 

19 LBA ANTH BA-AN 1 92.42 

18 LBA ANTH BA-AN 1 95.57 

http://www.unr.edu/ia


Sample Data for Advisors 
• http://www.unr.edu/ia 
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Gender Ethnicity Credits Resident State/Cnty HS GPA ACTE ACTM 
Has Pell$ 
(1=yes) 

Has 
Loan$ 
(1=yes) 

Clark 
Cnty 
Resi 
(1=yes) 

F AS 12 NV NWA 3.10 24 18 1 0 0 

F WH 15 NV NCL 3.23 21 18 0 1 1 

M WH 16 WU CA 3.19 23 20 0 0 0 

M WH 17 WU OR 3.23 24 17 0 0 0 

F WH 16 NV NWA 3.18 17 17 1 0 0 

F WH 15 NV NDO 3.47 30 21 0 0 0 

M WH 15 NV NWA 3.65 26 25 1 0 0 

F AS 16 NV NCL 3.90 30 28 0 0 1 

http://www.unr.edu/ia


Impact of this At-Risk Forecasting Model 

• University Retention Rates Hold Steady As States Balance Access 
with Success. Scripps Howard Foundation Wire, April 15, 2011.  

 

• Managing Talent: HCM and Higher Education. Campus 
Technology Magazine, October 2010, Vol. 24 Number 2, pp. 36-
42.  

 

• From Data to Information: Business Intelligence and Its Role in 
Higher Education Today.  University Business Magazine, January 
2009, pp. 25-27.  

 

• Consulting services to IR offices at institutions in Arizona, 
California, Hawaii, and Texas. 

 

 



Predictive Analytics at U. of Hawaii 

• New freshmen at the University of Hawai ̒i at 

Mānoa, Hawai ̒i‟s flagship public research 

university. 

• 78% retention rate. 4 percentage points below 

peer group average. Rate flat for last 15 years. 

• Excellent data storage, infrastructure, and IR 

reporting. 

• Growing need to convert data results into 

actionable strategies. 

 



Predictive Analytics at U. of Hawaii 

• Relevant previous research has provided a 

suitable starting point for developing at-risk 

student forecasting model. 

• Freshmen regression model has been well-

received by campus stakeholders. 

• Mānoa IR now moving from model building to 

implementation. 

• IR and Advising staff from U. of Nevada-Reno 

travelled to Mānoa to share insights on 

implementing predictive analytics. 



Takeaway from Collaboration 

• Early-alert data key 

• Identify results that are actionable. 

• Support for student advising 

• Involve colleges and departments. 

• Ways to increase awareness of 

retention and graduation rates 

– Campaigns 

– Showing impact on the bottom line 

 



Improving the Bottom Line at 

the University of Hawaii 

• 388 freshmen from 2010 dropped 
out in year one. 

• Retaining 26 students from 2010 
would have improved Mānoa‟s 
overall retention rate from 78.6% to 
80%. 

• Additional Revenue from Tuition and 
Fees = $259,920 (for 18 HI, 8 WUE, 
excludes OS). 

• Are there 26 students in this group 
that we can help/retain? 

 



Progress on Implementation at  

the University of Hawaii 

• Currently doing: 
– Campus road show to share prediction model to 

stakeholders (including faculty and students). 
• Improved presentation for non-IR audience 

– Collaborating with student employment office to use data 
• Better marketing of on-campus job opportunities to freshmen 

– Integrating data with WASC and CCA reports 

– Mentioning odds ratios in campus campaigns and 
advertisements 

– Working more closely with College/Department personnel 

– Considering qualitative surveys to supplement quantitative 
data 

– Clarifying the role of analytics in MIRO‟s mission and 
University‟s strategic retention plan 
 

 

 



Barriers to Implementation at  

the University of Hawaii 

• Culture change 

• Wary of misuse of 

data 

• More accountability 

• Faculty buy-in 
 

 

 



Next Steps in Implementation at  

the University of Hawaii 

• Beta-test with selected student advisors in spring 2013. 

• At-risk students monitored and called in for 
advising. 

• Decile data used to contextualize advising 
sessions. 

• Collaboration with co-curricular office. 

• Enrolling in the First Year Experience class is a 
significant predictor in Hawai ̒i‟s model. 

• “De-siloing” of data for analytical purposes. 

• Continued relationship-building at the college level and 
beyond. 

• Ride the analytics wave and maintain momentum. 
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Summary 
• Predicting students at-risk 

– Keep prediction model parsimonious 

– Keep prediction data for student advising intuitive and simple (actionable) 

– Triangulate prediction data with multiple sources of information 

– Use prediction data as component part of student dropout-risk assessment 

– Follow „best practices‟ in IR and keep abreast of changes in analytical and 
data reporting tools 

• Using prediction data for student advising 
– Embrace the use of available data 

– Ensure users conceptually understand what‟s behind the data 

– Use data as a complementary piece of information when advising students 

– Timing can be critical in terms of student intervention as well as maximizing 
advising resources 

• Stay abreast of new research on predictive analytics:  
– E.g. “Analytics in Higher Education” by J. Bichsel, Educause, 2012 

 

 
___________________________ 

Link to presentation: 

 http://www.unr.edu/ia/research 

http://www.unr.edu/ia/research

