A deep dive Into a
Data Warehouse

Office of
Institutional Effectiveness
Humboldt State University

Data Warehouse:
Strategic Data Repository - SDR

Presenters:

Ward Headstrom, Data Scientist

Ronda Stemach, Data Administrator

O

Michael Le, Research Associate CAIR
2016

mailto:ward.headstrom@humboldt.edu
mailto:ronda.stemach@humboldt.edu
mailto:michael.le@humboldt.edu

Tableau Dashboards

Dimensional Model Design

Dimensional Model Design

and
Dimension
Tables

Application Fact and Dimensions

CAIR
2016

Dimensional Model Design

and
Dimension
Tables

Historical Data
Tables

Gh ATTEMPTS
HOBSONS_CHECKLISTS
REZION

= HOBSONS_SRYCINDS
ATHAIDS2ORT AL ; =[~ HOOPREGDATE REINSTATED IMES
CE*JSJ D CmE\JFTE N FINALDEGMAJOR HOOPELIG 0
= FINAIDAPR Q\ GPAUNITSGSRETHNIC

APPTERL
APSTAE,

L]
ORKTE
LR

GRADUATE CPAXFER. o4 VAJD GREES GSRSPORT
HOLSING DERS NCAAETENICGRAD 2R
o 0o MAJOR_APP

_ SGPAMASTERS
- LAST_0DDS E'C‘,m B 2
\3P0RT

DSSDEGORI O
LRSZENROLL
RICOUNTVAL ;

SPORTS
STUTYPEMREG

Historical Tables

£ nas VEONY

GUNITS

CAIR
2016

013112174

I-1a
I-16
I-1a

-1é
I-1a

T-16 :

¢ ADMIT_DT |1t CONFIRM_DT
{null) {null)
{null) {nuall)
{null) {null)
{null) {nuall)

{null) {null)
16 {null)

Other History Tables Include:

<> Person

< Major

< Academic Program
< Class

<> Application

< Enrollment

< Degree

<> Financial Aid

< Athletic
Participation

{null)
{null)
{null)
{null)
{null)
{null)

Dimensional Model Design

Tables

Historical Data
Tables

Staging Tables

Staging Tables

ORACLE

PEOPLESOFT
CAMPUS SOLUTIONS

ps_csu_adm_excp_cd

ps_adm_app_fee

ps_residency_ off

ps_ext_acad_sum

ps_adm_appl_eval

ps_adm_appl_data

ps_acad_prog

ps_adm_appl_prog

ps_adm_appl_plan

ps_csu_adm_ap_data

ps_ext_acad_data

Dimensional Model Design

Tables

Historical Data
Tables

Staging Tables

Foundation Tables

COUNTYMAME
ALAMEL
ALPINE

AMRDOR
EBUTIE

Central
HE
HW

" acTion
ADMT -
2 ADMT ADRE
3 BDMT ADMT
ADMT
{null)
{null)
{null)
{null)

v
{null)
{null)

LOVISIONA

{null)
{null)
{null)
{null)

(null)
{rall)
(nuall)
(null)

{null)
{null)
{null)
{null)
{null)
{null}
{null)
H

hif

{null)
{null}

{null)
{null)
null)

{null)
N

{null)
{null)
{null)
{null)
{null)
{null}
{null)
H

hif

{null)
{null}

{null)
{null)
{nuall)
{null)
{null)
{null)
{null)
{nuall)
H

il

(null)
{null)

{null)
H
n
{null)
{null}

(null)
il
il
(mull)
(null)

COUNTYNAME

(null)
(null)
(null)
(null)
ll)
{null)
(nully
(null)
N
N
(null)
(nully

ALDEREO
ALHAMER
ALHAMBRA

o o oo

ALHAMERR

Admit without
Admitted-
Admitted Fully
Admitted on Pr
Rdmi m R
AdmisCancel-Did No
Admis R d Stdt Req
ath
Applied
Applied
Admitted
Admitted ionally

via Auto Ewval

CAIR
2016

\
@ Design Principles/ Practices

* Views and Functions

90% of what we do is writing and testing SQL objects
Business practices built into views and functions (>1500)
Only refer to each table once

Layer views

Build small SQL tools to eliminate repetition and increase reliability
download: copy a SIS table to local database and build index
effdt: create stage 0 and 1 views of a staging table

fieldsnotin: return fields in a view that are not in another view
cdc: capture new and changed data records in a history table
dmgen: “materialize” a history view and add indexes

cout: check out a script from RCS

cin: check in a script to RCS and mark as modified

refresh: reload all SQL objects that have been modified

rev: revalidate all SQL objects

fvcol: find all views which reference a particular column

e Destructive rebuild of staging tables
Table-driven download of 220 tables, 90M records
Approximately one hour

e Nondestructive appends to history tables
Daily snapshot of “current values”
Append to about 20 tables
Approximately one hour

e Destructive build of dimensional tables
Rebuild about 35 fact tables and 25 dimension tables
Approximately two hours

ETL Process (nightly)

CAIR
2016

Dimensional

Model Design

Model Views

Fact and
Dimension Tables

History Views &
Functions

Historical Data Tables
Staging Views & Functions

Staging Tables
Foundation Views & Functions
CAIR
2016

Foundation Layer .

Staging tables - download

Add table name to download table and run download script (or wait for it to run
automatically at the beginning of the nightly ETL).

== SA_DOWNLOAD
TABLENAME « NIGHTLY - DOWNLOAD GROUP ¥ DOWNLOAD DT - DOWNLOAD ROWS ~
ps_adm_appl_data " app 11/10/2016 12:09:56 AM 325724
ps_adm_appl_plan app 11/10/2016 12:10:24 AM 1022492

ps_adm_appl_prog f app 11/10/2016 12:10:46 AM 1018323
ps_csu_adm_ap_data app 11/10/2016 12:14:51 AM 325774
ps_csu_adm_app _fee Y app 11/10/2016 12:14:16 AM 146750
ps_hum_admconf_wvw app 11/10/2016 12:26:07 AM 3134

CAIR
2016

Staging views - stage 0 and 1

Add aliases and handle effective-dating:

define table=ps_adm _appl plan

define view=adm appl plan

define grain=emplid,acad _career,stdnt_car_nbr,adm _appl nbr,appl prog _nbr
define alias="emplid id,acad career career,adm _appl nbrappno”

@ effdt

This creates two views:

adm _appl plan_sO with all the records and adds “enddt” field
adm _appl plan_s1 with the current records (sysdate between effdt and enddt)

CAIR
2016

Higher level staging views

Add business rules and joins

--academic work done at another institution
CREATE or REPLACE VIEW ext_acad AS
SELECT d.*,
unt_ comp_total * decode(d.ext_term_type,'QTR',2/3,1) earned,
decode(gpa_type,'HIGH',ext gpa) hs_gpa
FROM ext acad sum _sls,ext acad data s1d
WHERE s.id(+)=d.id
and s.ext_org_id(+)=d.ext_org_id
and s.ext_career(+)=d.ext_career
and s.ext_data_nbr(+)=d.ext_data_nbr,

CAIR
2016

Dual function example 1

Hide repetitive code - - void.sql and nv.sql

-- return Y if variable is null or empty or only contains spaces
CREATE or REPLACE FUNCTION void(val varchar) RETURN varchar2 as

BEGIN
RETURN CASE WHEN nvl(length(trim(val)),0)=0 THEN "Y' else 'N' end;

END;
/

-- return alternate value if variable is void (null or empty or only contains spaces)
CREATE or REPLACE FUNCTION nv(val varchar, altval varchar default ' ') RETURN varchar2 as

BEGIN
RETURN CASE WHEN void(val)="Y" THEN altval ELSE val END,;

=\D) O
/
CAIR

Dual function example 2

Encapsulating business rules

-- return a Banner-style term code for a given date
CREATE or REPLACE FUNCTION date2term (fdate date default null) RETURN varchar2 as

RESULT varchar2(6);
BEGIN
SELECT to_char(nvi(fdate,sysdate), rrrr')||
CASE WHEN to_char(nvi(fdate,sysdate), mm")<'05" THEN '20'
WHEN to_char(nvil(fdate,sysdate),'mm')<'08"' THEN '30’
ELSE '40' END
INTO result FROM dual;
RETURN result;

end;
/ (O

CAIR
o
We have about 50 date, term, and year conversion functions:

https://sites.google.com/a/humboldt.edu/sdr/programming-information/date-and-term-functions

Staging function example

Encapsulating complex business rules
FUNCTION apstat(fid varchar,fterm varchar,fappno varchar) RETURN varchar;

This function returns an application status for a particular application.
1) Search through decision stack to status from most recent decision
2) If student has been admitted, see if this status needs to be modified
a) Look for housing application
b) Look for orientation registration
c) Look for class enroliment

CAIR
2016

Building history tables (daily snapshots)

Using the application history table (app_sdr)as an example:

Begin by creating a table of the fields we want to capture.
This table contains 36 fields plus effdt, enddt, and obsolete

Create a view based on source data tables with the fields we are capturing: app_cs
This view contains data derived from 13 different CMS tables
and one foundation table

Call the change-data-capture script, cdc.sql, to add new or changed records to app_sdr
define tablename=app
@ cdc

cdc.sqluses SQLset logic (MINUS) to compare the current data from the source tables with
the last record with the same grain in history. Anything new or changed is added with today

as the effective date. Data in history but missing from the source data is duplicated with
CAIR
2016

today as effdt and obsolete=Y. The end date is then adjusted on all records.

History views - >Dimensional table

-- top-level history view
-- application facts to-date during the last 8 years

CREATE or REPLACE VIEW fact_app_td AS SELECT
a.*

FROM fact_app_his a, term td t

WHERE a.term_key=t.term_key
AND t.comp_dt BETWEEN a.effdt AND a.enddt
AND a.obsolete is null

/

-- “materialize” fact_app_td (as f app_td) and build indexes on keys

DEFINE viewname=fact_app_td O

@ dmgen
CAIR
2016

Combining dimensional views

Once all the dimension objects are created, they are combined into a dimensional model views. For
example, applications to-date: dm_app_td.

CAIR
2016

Combining dimensional views (theoretical)

This is what we would like to write to create dm__app_td:

CREATE or REPLACE VIEW dm _app_td AS
SELECT f.*p.*t.*,0.*,m.*fa.*
FROM fv_app_td f, dv_person p, dv_term t, dv_origin o, dv_major m, dv_finaid fa
WHERE f.term_key=t.term_key
AND f.person_key=p.person_key
AND f.major_key=m.major_key
AND f.origin_key=o0.origin_key
AND f.finaid_key=fa.finaid key;

However, SQL would complain about the duplicate key fields, (and possibly others), so our
actual view definitions are a bit more complicated.

CAIR
2016

Combining dimensional views (actual)

-- the first intermediate view, ivl_app_td.sql, joins the fact table to the first dimension

DEFINE viewnamel=dv_term
DEFINE viewname2=fv_app_td
@ fieldsnotin

CREATE or REPLACE VIEW ivl _app_td AS SELECT f.*, &f1&f2&f3&f4&f5
FROM fv_app_td f,dv_term d WHERE f.term=d.term_key;
@iv2_app_td

iv2_app_td adds dv_origin
iv3_app_td adds dv_person

Iv4_app_td adds dv_major
Iv5_app_td adds dv_finaid

CREATE or REPLACE VIEW dm_app_td AS SELECT f.* FROM iv6_app_td;
2016

Development Environment

* Oracle Database (maintained by ITS)
SQL Developer, PL/SQL, SQL Plus
Production schema (SA) contains all tables and SQL objects
Developer schemas - copy of all SQL objects

e Linux front-end to Oracle DB Server (maintained by ITS)
RCS (revision control system) to store SQL object definition files
Emacs editor
Shell scripts that we write (example: ETL)

o 3rd-pParty Tools
MobaXterm (SSH telnet) - free
Tableau - not free
MS Access - sort-of free (campus license)
Google site wiki -

https://sites.google.com/a/humboldt.edu/sdr/

Development environment

CAIR
2016

Example of developing code

The California Graduation Initiative requires us to report URM. We already had URM in our
data warehouse, but we had defined it differently than the state legislature.

e We considered anyone who was Hispanic, Black, Indian, or Pacific Islander to be URM,
including those who were more than one race. We don’t return a value for Unknown
ethnicity or Nonresident Aliens.

e CAdoesn’t consider Pacific Islanders to be URM, nor does it believe anyone who is Two
or More is URM, even if they are part Black or Indian. Plus, they include Nonresident
Aliens and count Unknown as not URM.

To deal with this, ladded a new field to the person dimension. First, I checked dv_person.sql
out of RCS.

WARDHDEV> @ cout

File name: dv_person

v/IRCS/dv_person.sql,v --> v/dv_person.sql

revision 1.18 (locked) O

done AR
v/idv_person.sql has been checked out into /home/wwh7001/dev 2016

Example of developing code (part 2)

| then edited dv_person.sqlto add a new field: eth urm gi

CASE WHEN cit not in ('Y','I') or ethcode="8" then "'
WHEN instr(eth_indian|leth_black|leth_hispanic|leth_pacisl,'Y')>0 THEN 'Y’
ELSE 'N' END eth_urm,
-- CA definition of URM for the Graduation Initiative
CASE WHEN ethcitcode in ('2','3",'7") THEN 'Y’
WHEN ethcitcode<'8" THEN 'N' END eth urm gi,

| then load dv_person.sql into my schema:
WARDHDEV> @ dv_person.sql

Since we have linked all our dependent views, this also loads all the views that depend ong’ _ O
dv_person. 2016

Example of developing code (part 3)

After checking for errors and testing the new field in dv_person and upstream dimensional
models, I check dv_person back into RCS:
WARDHDEV> @ cin

Then Irefresh and revalidate all the SQL objects in my schema to make sure no errors have
been introduced:
WARDHDEV> @ refresh
WARDHDEV> @ rev
pass 1 - revalidating 200 objects

Now I log into SA, the production account, and run refresh and revalidate again:
SA> @ refresh
SA> @ rev
pass 1 - revalidating 21 objects

O

The new field, eth_urm _gi, is now available to Tableau in all dimensional models that use
PAONKS)

dv_person.

Kimball Model Considerations

“Business Development Lifecycle Approach”

= Focus on adding Business Value

= Dimensionally structure the data that’s
delivered to the business

= Develop iteratively in manageable /ife cycle
Increments rather than attempting a galactic
Big Bang approach

Goal. Delivering business intelligence to support
University decision making.

O

CAIR
2016

http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dw-bi-lifecycle-method/ .

Kimball Model Deviations

Different approaches with a Common
Ground:

« Adata warehouse is a needed
analytical environment for any
organization.

« The goalis to publish the “right” data
and make it easily accessible

http://www.kimballgroup.com/2004/03/differences-of-opinion/

CAIR
2016

Kimball Model Deviations

» Use of Views

 Surrogate Keys vs Native or
Composite Keys

« Degenerate Dimensions - 1:1
Attributes stored with Fact

CAIR
2016

Conclusions

Pros of Building from “Scratch”
<{> Custom, Demand-based Design

<> 3" Party Independence
<> Low start-up cost

<> Broad knowledgebase
(PL/SQL, C#, Java)

Pros of 3rd Party Software
<> Visual Interface

<> Version Control

<> Metadata Support
<> Debugging Support
<> Transform Tools

<> Multithreading

Credits

Thanks!

Any questions?

http://www.slidescarnival.com/
http://unsplash.com/

	A deep dive into a Data Warehouse
	Office of �Institutional Effectiveness�Humboldt State University
	Tableau Dashboards
	Dimensional Model Design
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	APP_CDC
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Design Principles/Practices
	ETL Process (nightly)
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Development Environment
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Conclusions
	Thanks!

