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Transitions and intersegmental trust

•Within systems: highly reliable progression after 

successful completion

•Between systems – different story

•HS to CSU

– 38% repeat previously completed coursework, ~60% 

African Americans, 45% of Hispanics

•HS to CCC transition

– ~3/4 repeat ≥ 1 level, ~1/2 repeat ≥ 2 levels of math

– African Americans & Hispanics ~60% more likely, Female 

students ~20% more likely

•Noyce Foundation report

– Algebra in 8th grade, ~2/3 repeat including 50% of students 

with B or better

– Algebra in 7th grade advance to Geometry in 8th grade
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Data Set for the Models
• California Community College (CCC) students enrolled in an English, Math, Reading or 

ESL class with matching high school data in California Partnership for Achieving Student 

Success (CalPASS) statewide intersegmental database 

• ~1 M cases for Math & English; ~200k for Reading & ESL

• Bulk of first CCC enrollments from 2008 through 2014 

• Rules were developed with the subset of students who had four years of high school data 

(about 25% of total sample)

• Used machine learning rpart package in R to create decision trees

– http://rpgroup.org/Our-Projects/All-Projects/Multiple-Measures/PilotCollegeResources

see Decision Rules and Analysis Code -> Using R for Creating Predictive Models

• R4IR Tutorial https://drive.google.com/drive/folders/0Bz-

jqwGzLQjJajA5YUIxUjdETzA?usp=sharing

http://rpgroup.org/Our-Projects/All-Projects/Multiple-Measures/PilotCollegeResources
https://drive.google.com/drive/folders/0Bz-jqwGzLQjJajA5YUIxUjdETzA?usp=sharing


• High School Unweighted Cumulative GPA 

• Grades in high school courses

• CST scores

• Advanced Placement course taking

• Taking higher level courses (math)

• Delay between HS and CCC (math)

• HS English types (expository, remedial, ESL)

• HS Math level (Elem. Algebra, Integrated Algebra, Pre-Calculus)

Variables Explored in the Models



What are Decision Trees?
• Howard Raiffa explains decision trees in Decision 

Analysis (1968).

• Ross Quinlan invented ID3 and introduced it to the world 
in his 1975 book, Machine Learning.

• CART popularized by Breiman et al. in mid-90’s
– Breiman, L., Friedman, J., Olshen, R., & Stone, C. 

(1994). Classification and regression trees. Chapman 
and Hall: New York, New York.

– Based on information theory rather than statistics; 
developed for signal recognition
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How is homogeneity measured?

● Gini-Simpson Index
● p-square = probability of two items taken at random from the set being of 

same types; D=dissimilarity/diversity
● Proposed by Corrado Gini in 1912 as a measure of inequality of income or 

wealth; used in demographics and ecology as diversity index
● If selecting two individual items randomly from a collection, what is the 

probability they are in different categories.
● Other indices such as Shannon-Wiener can also be used



Key considerations

• Splitting criterion: how small should the leaves be? 

What are the minimum # of splits?

• Stopping criterion: when should one stop growing the 

branch of the tree?

• Pruning: avoiding overfitting of the tree and improving 

• Understanding classification performance



Loading Data in R
#set working directory for location of data

setwd("C:/Users/Me/Documents/MMAPData")

#Load data

MMAPMath <- read.csv(“C:/Folder/MMAPMath.csv", header=T)

#save data and analyses to working directory

save.image(“MMAPMath.RData")

http://rpgroup.org/Portals/0/Documents/Projects/MultipleMeasures/DecisionR

ulesandAnalysisCode/Instructions-for-Using-R-to-Create-Predictive-Models-

v5.pdf

http://rpgroup.org/Portals/0/Documents/Projects/MultipleMeasures/DecisionRulesandAnalysisCode/Instructions-for-Using-R-to-Create-Predictive-Models-v5.pdf


Basic Classification Decision Tree
#CART packages

library(rpart)

library(rpart.plot)

#set control parameter

ctrl <- rpart.control(minsplit = 100, cp = 0.0015, xval=10)  control specs here

cartfit_m5statpoisson <- rpart(formula = CC_FIRST_COURSE_SUCCESS_IND ~ 

HS_11_GPA_CUM + PRE_ALG_ANY_C + ALG_I_ANY_C + ALG_II_ANY_C + 

GEO_ANY_C + TRIG_ANY_C + PRE_CALC_ANY_C + CALC_ANY_C + STAT_ANY_C + 

STAR_MATH_EAP_IND + HS_EXIT_SUBJ_TO_CC_ENTRY_SUBJ + AP_ANY_C + [CST 

score and subscale variables]

,data = m5stat

,method="poisson“ Change method here to test different distributions 

,control=ctrl)  Change control specs here



Splitting Methods

• Class = used for categorical dependent var

• ANOVA = used for continuous dependent var

• Poisson = used for count of events in time frame such 

as survival data

• Exponential = can also be used for survival with 

different distributional assumptions



CART Output and Diagnostics

> printcp(cartfit_m5statpoisson)  shows relative error by cp value

> print(cartfit_m5statpoisson)  indented text print out of tree

> rsq.rpart(cartfit_m5statpoisson)  graph showing error by # splits

> prp(cartfit_m5statpoisson,main="Transfer Level Statistics” 

,extra=100,varlen=0,left=FALSE)  graph tree



Pros and Cons of Decision Trees 
Strengths
• Visualization

• Easy to understand output

• Easy to code rules

• Model complex relationships 
easily

• Linearity, normality,  not 
assumed 

• Handles large data sets

• Can use categorical and 
numeric inputs

Weaknesses
• Results dependent on training 

data set – can be unstable esp. 
with small N

• Can easily overfit data

• Out of sample predictions can 
be problematic

• Greedy method selects only 
‘best’ predictor

• Must re-grow trees when 
adding new observations



Statistics Decision Tree for 

Direct Matriculants



Transfer Level Course Direct Matriculant Non-Direct Matriculant

College Algebra (STEM)
Passed Algebra II  (or better)

HS 11 GPA >=3.2 OR

HS 11 GPA >=2.9 AND Pre-

Calculus C (or better)

HS 12 GPA >=3.2 OR      

HS 12 GPA >=3.0 AND Pre-

Calculus or Statistics (C or better)

Statistics (General 

Education/Liberal Arts)
Passed Algebra I (or better)

HS 11 GPA >=3.0 OR      

HS 11 GPA >=2.3 AND Pre-

Calculus C (or better)

HS 12 GPA >=3.0 OR      

HS 12 GPA >=2.6 AND Pre-

Calculus (C or better)

English HS 11 GPA >=2.6 HS 12 GPA >=2.6

MMAP Transfer-Level Placement Recommendations

http://bit.ly/RulesMMAP

http://bit.ly/RulesMMAP




Transfer level placement by year/method in 

Math at Cuyamaca
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Gateway momentum in Math at Cuyamaca
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Gateway momentum in English at Skyline
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Fall 2015:Cañada College

bit.ly/MMAPPilotLessons

Rule set: English = 2.3 AND B- or better; Math = 3.2 AND C or better 

http://bit.ly/MMAPPilotLessons


Various Placement Systems and Their 
Impact on Student Equity



Placement Error

• Overplacement: Student is placed above their ability to succeed. 

Highly visible. 

• Underplacement: Student could have been successful at a higher 

level than where placed. Tends to be invisible.

• Current placement systems tend to result in much greater 

underplacement error.



Evaluating Placement Systems
Disjunctive placement: 

Take the highest placement (Test or MMAP)

Recommended by MMAP 

Compensatory placement: 

Logistic regression (combines Test, MMAP simultaneously)

Run with two cut-values: 0.70, 0.50

Conjunctive placement:

Only if Test and MMAP in agreement

Highly restrictive

Not recommended by the CCCCO



Accuracy: College Statistics Placement
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One Year Throughput Rate: College Statistics Course
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Percentage of Underrepresented Students of Color College-
level Placements
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Summary of Modeling Placement Systems

• No single metric is sufficient but several well-chosen metrics (including throughput) 
can allow for a more informed decision

• Disjunctive models have higher access and throughput than compensatory models

• The conjunctive model was very restrictive and had the lowest throughput rates and 
URM placement rates

• Students placed via alternative methods

– far more likely to be placed into college-level courses

– successfully complete college-level courses at the same or higher rates when placed there

– far more likely to complete the gateway course in the discipline

• Students should progress between systems as smoothly as within systems
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