How Machine Learning and Multiple Measures are Reshaping College Placement

Terrence Willett, John Hetts, Craig Hayward

CAIR Conference Concord

November 8, 2017

Acknowledgements

- Current and former MMAP team members
- Academic Senate for California Community Colleges
- Common Assessment Initiative Steering Committee
- Pilot colleges
- High School participants
- California Community College Chancellor's Office MIS team

Transitions and intersegmental trust

•Within systems: highly reliable progression after successful completion

•Between systems – different story

•HS to CSU

- 38% repeat previously completed coursework, ~60%
 African Americans, 45% of Hispanics
- •HS to CCC transition
 - $-\sim$ 3/4 repeat \geq 1 level, \sim 1/2 repeat \geq 2 levels of math
 - African Americans & Hispanics ~60% more likely, Female students ~20% more likely

Noyce Foundation report

- Algebra in 8th grade, ~2/3 repeat including 50% of students with B or better
- Algebra in 7^{th} grade advance to Geometry in 8^{th} grade

for California Community College

Data Set for the Models

- California Community College (CCC) students enrolled in an English, Math, Reading or ESL class with matching high school data in California Partnership for Achieving Student Success (CalPASS) statewide intersegmental database
 - ~1 M cases for Math & English; ~200k for Reading & ESL
- Bulk of first CCC enrollments from 2008 through 2014
- Rules were developed with the subset of students who had four years of high school data (about 25% of total sample)
- Used machine learning *rpart* package in R to create decision trees
 - <u>http://rpgroup.org/Our-Projects/All-Projects/Multiple-Measures/PilotCollegeResources</u> see Decision Rules and Analysis Code -> Using R for Creating Predictive Models
- R4IR Tutorial <u>https://drive.google.com/drive/folders/0Bz-jqwGzLQjJajA5YUIxUjdETzA?usp=sharing</u>

Variables Explored in the Models

- High School Unweighted Cumulative GPA
- Grades in high school courses
- CST scores
- Advanced Placement course taking
- Taking higher level courses (math)
- Delay between HS and CCC (math)
- HS English types (expository, remedial, ESL)
- HS Math level (Elem. Algebra, Integrated Algebra, Pre-Calculus)

What are Decision Trees?

- Howard Raiffa explains decision trees in <u>Decision</u> <u>Analysis (1968)</u>.
- Ross Quinlan invented ID3 and introduced it to the world in his 1975 book, <u>Machine Learning</u>.
- CART popularized by Breiman et al. in mid-90's
 - Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1994). *Classification and regression trees.* Chapman and Hall: New York, New York.
 - Based on information theory rather than statistics; developed for signal recognition

How is homogeneity measured? $D = 1 - \sum_{i=1}^{n} p_i^2$

- Gini-Simpson Index
- p-square = probability of two items taken at random from the set being of same types; D=dissimilarity/diversity
- Proposed by Corrado Gini in 1912 as a measure of inequality of income or wealth; used in demographics and ecology as diversity index
- If selecting two individual items randomly from a collection, what is the probability they are in different categories.
- Other indices such as Shannon-Wiener can also be used

Key considerations

Splitting criterion: how small should the leaves be?
 What are the minimum # of splits?

 Stopping criterion: when should one stop growing the branch of the tree?

• Pruning: avoiding overfitting of the tree and improving

Understanding classification performance

Loading Data in R

#set working directory for location of data
setwd("C:/Users/Me/Documents/MMAPData")
#Load data
MMAPMath <- read.csv("C:/Folder/MMAPMath.csv", header=T)
#save data and analyses to working directory
save.image("MMAPMath.RData")</pre>

http://rpgroup.org/Portals/0/Documents/Projects/MultipleMeasures/DecisionR ulesandAnalysisCode/Instructions-for-Using-R-to-Create-Predictive-Modelsv5.pdf

Basic Classification Decision Tree

```
#CART packages
library(rpart)
library(rpart.plot)
```

cartfit_m5statpoisson <- rpart(formula = CC_FIRST_COURSE_SUCCESS_IND ~ HS_11_GPA_CUM + PRE_ALG_ANY_C + ALG_I_ANY_C + ALG_II_ANY_C + GEO_ANY_C + TRIG_ANY_C + PRE_CALC_ANY_C + CALC_ANY_C + STAT_ANY_C + STAR_MATH_EAP_IND + HS_EXIT_SUBJ_TO_CC_ENTRY_SUBJ + AP_ANY_C + [CST score and subscale variables]

,data = m5stat

,method="poisson" ← Change method here to test different distributions
,control=ctrl) ← Change control specs here

Splitting Methods

- Class = used for categorical dependent var
- ANOVA = used for continuous dependent var
- Poisson = used for count of events in time frame such as survival data

• Exponential = can also be used for survival with different distributional assumptions

CART Output and Diagnostics

- printcp(cartfit_m5statpoisson) shows relative error by cp value
- > print(cartfit_m5statpoisson) findented text print out of tree
- rsq.rpart(cartfit_m5statpoisson) splits

Pros and Cons of Decision Trees

Strengths

- Visualization
- Easy to understand output
- Easy to code rules
- Model complex relationships easily
- Linearity, normality, not assumed
- Handles large data sets
- Can use categorical and numeric inputs

Weaknesses

- Results dependent on training data set – can be unstable esp. with small N
- Can easily overfit data
- Out of sample predictions can be problematic
- Greedy method selects only 'best' predictor
- Must re-grow trees when adding new observations

MMAP Transfer-Level Placement Recommendations

Transfer Level Course	Direct Matriculant	Non-Direct Matriculant
College Algebra (STEM) Passed Algebra II (or better)	HS 11 GPA >=3.2 OR	HS 12 GPA >=3.2 OR
	HS 11 GPA >=2.9 AND Pre-	HS 12 GPA >=3.0 AND Pre-
	Calculus C (or better)	Calculus or Statistics (C or better)
Statistics (General Education/Liberal Arts)	HS 11 GPA >=3.0 OR	HS 12 GPA >=3.0 OR
Passed Algebra I (or better)	HS 11 GPA >=2.3 AND Pre-	HS 12 GPA >=2.6 AND Pre-
	Calculus C (or better)	Calculus (C or better)
English	HS 11 GPA >=2.6	HS 12 GPA >=2.6

http://bit.ly/RulesMMAP

Success Rates in Transfer-level English

73% Sierra, 2014F 68% 67% Shasta, 2015S 68% San Diego CCD, 2015F 79% 69% 69% Norco, 2016F 65% 67% MiraCosta, 2016S 68% MiraCosta, 2016F 80% 50% 56% Merritt, 2015M-2016S 75% Las Positas, 2016F 76% Laney, 2015M-2016S 71% 77% Irvine Valley, 2016F 85% 78% College of Alameda, 2015M-2016S 78% 76% Canada, 2014F/2015F 72% 73% Berkeley, 2015M-2016S 62% 0% 20% 40% 60% 80% 100% Other MMAP

Success Rates in Transfer-level Math

"Under our previous policies, African American and Latino students were far less likely to place into transfer-level math. Under the new policies, African American students' access to transferlevel math increased eightfold, Latino students' access increased four-fold, and the disproportionate impact in placement was eliminated for all racial groups." – Cuyamaca College

"There are thousands of reasons to do this; each one has a name." – Bakersfield College

"MMAP is a COMPLETION initiative, not a SUCCESS initiative." – Santa Monica College

Transfer level placement by year/method in Math at Cuyamaca

Gateway momentum in Math at Cuyamaca

Successful completion of transfer-level math before and after change by assessment level

Successful completion of transfer-level math before and after change by ethnicity

Gateway momentum in English at Skyline

Successful rate by cohort and course type

Fall 2015:Cañada College

Cañada College Transfer-level Success Rates

Rule set: English = 2.3 AND B- or better; Math = 3.2 AND C or better

bit.ly/MMAPPilotLessons

Various Placement Systems and Their Impact on Student Equity

Placement Error

- **Overplacement:** Student is placed above their ability to succeed. Highly visible.
- **Underplacement:** Student could have been successful at a higher level than where placed. Tends to be invisible.
- Current placement systems tend to result in much greater underplacement error.

Evaluating Placement Systems

Disjunctive placement:

Take the highest placement (Test or MMAP) Recommended by MMAP

Compensatory placement:

Logistic regression (combines Test, MMAP simultaneously) Run with two cut-values: 0.70, 0.50

Conjunctive placement:

Only if Test and MMAP in agreement

Highly restrictive

Not recommended by the CCCCO

Accuracy: College Statistics Placement

Accurate Placement in College Statistics

ERP EDUCATIONAL RESULTS PARTNERSHIP

*Negatives are unknown for the disjunctive models, so accuracy cannot be completely calculated for disjunctive model.

One Year Throughput Rate: College Statistics Course

Statistics Class Throughput rate by Placement System

Percentage of Underrepresented Students of Color Collegelevel Placements

Summary of Modeling Placement Systems

- No single metric is sufficient but several well-chosen metrics (including throughput) can allow for a more informed decision
- Disjunctive models have higher access and throughput than compensatory models
- The conjunctive model was very restrictive and had the lowest throughput rates and URM placement rates
- Students placed via alternative methods
 - far more likely to be placed into college-level courses
 - successfully complete college-level courses at the same or higher rates when placed there
 - far more likely to complete the gateway course in the discipline
- Students should progress between systems as smoothly as within systems

MMAP Research Team

Terrence Willett The RP Group <u>twillett@rpgroup.org</u>

Mallory Newell The RP Group <u>newellmallory@deanza.edu</u>

Craig Hayward The RP Group <u>chayward@rpgroup.org</u>

Loris Fagioli The RP Group <u>Ifagioli@ivc.edu</u> Rachel Baker UC Irvine rachelbb@uci.edu

Nathan Pellegrin The RP Group nathan.pellegrin@gmail.com

Peter Bahr University of Michigan prbahr@umich.edu John Hetts Educational Results Partnership jhetts@edresults.org

Ken Sorey Educational Results Partnership <u>ken@edresults.org</u>

Daniel Lamoree Educational Results Partnership <u>dlamoree@edresults.org</u>

